Afficher la notice abrégée

dc.contributor.authorMwanga D. M.
dc.contributor.authorKipchirchir I. C.
dc.contributor.authorMuhua G. O.
dc.contributor.authorNewton C. R.
dc.contributor.authorKadengye D. T.
dc.date.accessioned2025-07-24T07:23:19Z
dc.date.available2025-07-24T07:23:19Z
dc.date.issued2025
dc.identifier.urihttps://doi.org/10.1016/j.gloepi.2025.100183
dc.identifier.urihttp://knowhub.aphrc.org/handle/123456789/2395
dc.description.abstractThis study applies machine learning (including random forest, XGBoost, SVM, and Super Learner) to predict attrition in a two-stage epilepsy prevalence survey in Nairobi. Results show high model performance (AUC up to 0.98), identifying key predictors such as proximity to industrial areas, gender, employment, education, household size, and seizure history. The findings guide targeted strategies to improve follow-up rates and inform a predictive tool for future surveys.
dc.publisherElsevier
dc.subjectEpidemiology II Public Health II Machine Learning II Epilepsy II Urban Health II
dc.titleModeling the Determinants of Attrition in a Two-stage Epilepsy Prevalence Survey in Nairobi Using Machine Learning


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée