• English
    • français
    • Swahili
  • français 
    • English
    • français
    • Swahili
  • Ouvrir une session
Advanced Search
Help Guide
Voir le document 
  •   Accueil de DSpace
  • Publications
  • Published Paper
  • Data Synergy and Evaluation
  • 2025
  • Voir le document
  •   Accueil de DSpace
  • Publications
  • Published Paper
  • Data Synergy and Evaluation
  • 2025
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling the Determinants of Attrition in a Two-stage Epilepsy Prevalence Survey in Nairobi Using Machine Learning

Thumbnail
Date
2025
Auteur
Mwanga D. M.
Kipchirchir I. C.
Muhua G. O.
Newton C. R.
Kadengye D. T.
Metadata
Afficher la notice complète
Usage Stats
0
views
0
downloads

Résumé
This study applies machine learning (including random forest, XGBoost, SVM, and Super Learner) to predict attrition in a two-stage epilepsy prevalence survey in Nairobi. Results show high model performance (AUC up to 0.98), identifying key predictors such as proximity to industrial areas, gender, employment, education, household size, and seizure history. The findings guide targeted strategies to improve follow-up rates and inform a predictive tool for future surveys.
Sujet
Epidemiology II Public Health II Machine Learning II Epilepsy II Urban Health II
URI
https://doi.org/10.1016/j.gloepi.2025.100183
http://knowhub.aphrc.org/handle/123456789/2395
Collections
  • 2025 [19]

KnowHub software copyright © 2002-2022  LYRASIS
Contactez-nous | Faire parvenir un commentaire
Theme by 
Atmire NV
 

 

Parcourir

Tout DSpaceCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

Mon compte

Ouvrir une sessionS'inscrire

KnowHub software copyright © 2002-2022  LYRASIS
Contactez-nous | Faire parvenir un commentaire
Theme by 
Atmire NV