• English
    • français
    • Swahili
  • English 
    • English
    • français
    • Swahili
  • Login
Advanced Search
Help Guide
View Item 
  •   Knowhub Home
  • Publications
  • Published Paper
  • Data Synergy and Evaluation
  • 2025
  • View Item
  •   Knowhub Home
  • Publications
  • Published Paper
  • Data Synergy and Evaluation
  • 2025
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling the Determinants of Attrition in a Two-stage Epilepsy Prevalence Survey in Nairobi Using Machine Learning

Thumbnail
Date
2025
Author
Mwanga D. M.
Kipchirchir I. C.
Muhua G. O.
Newton C. R.
Kadengye D. T.
Metadata
Show full item record
Usage Stats
0
views
0
downloads

Abstract
This study applies machine learning (including random forest, XGBoost, SVM, and Super Learner) to predict attrition in a two-stage epilepsy prevalence survey in Nairobi. Results show high model performance (AUC up to 0.98), identifying key predictors such as proximity to industrial areas, gender, employment, education, household size, and seizure history. The findings guide targeted strategies to improve follow-up rates and inform a predictive tool for future surveys.
Subject
Epidemiology II Public Health II Machine Learning II Epilepsy II Urban Health II
URI
https://doi.org/10.1016/j.gloepi.2025.100183
http://knowhub.aphrc.org/handle/123456789/2395
Collections
  • 2025 [19]

KnowHub software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KnowhubCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

KnowHub software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV