• English
    • français
    • Swahili
  • Swahili 
    • English
    • français
    • Swahili
  • Ingia ndani
Advanced Search
Help Guide
Kioneshe 
  •   DSpace Mwanzo
  • Publications
  • Published Paper
  • Data Synergy and Evaluation
  • 2025
  • Kioneshe
  •   DSpace Mwanzo
  • Publications
  • Published Paper
  • Data Synergy and Evaluation
  • 2025
  • Kioneshe
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling the Determinants of Attrition in a Two-stage Epilepsy Prevalence Survey in Nairobi Using Machine Learning

Thumbnail
Tarehe
2025
Mwandishi
Mwanga D. M.
Kipchirchir I. C.
Muhua G. O.
Newton C. R.
Kadengye D. T.
Metadata
Show full item record
Usage Stats
0
views
0
downloads

Kwa ufupi
This study applies machine learning (including random forest, XGBoost, SVM, and Super Learner) to predict attrition in a two-stage epilepsy prevalence survey in Nairobi. Results show high model performance (AUC up to 0.98), identifying key predictors such as proximity to industrial areas, gender, employment, education, household size, and seizure history. The findings guide targeted strategies to improve follow-up rates and inform a predictive tool for future surveys.
Somo
Epidemiology II Public Health II Machine Learning II Epilepsy II Urban Health II
URI
https://doi.org/10.1016/j.gloepi.2025.100183
http://knowhub.aphrc.org/handle/123456789/2395
Collections
  • 2025 [19]

KnowHub software copyright © 2002-2022  LYRASIS
Wasiliana nasi | Tuma maoni
Theme by 
Atmire NV
 

 

Peruzi

Dspesi yoteJumuhia na VifunguTarehe ya tukioMwandishi wa kitabuJina la kitabuSomoKifungu hikiTarehe ya tukioMwandishi wa kitabuJina la kitabuSomo

My Account

KuingiaSajili

KnowHub software copyright © 2002-2022  LYRASIS
Wasiliana nasi | Tuma maoni
Theme by 
Atmire NV