• English
    • français
    • Swahili
  • English 
    • English
    • français
    • Swahili
  • Login
Advanced Search
Help Guide
View Item 
  •   Knowhub Home
  • Publications
  • Published Paper
  • Data Synergy and Evaluation
  • 2025
  • View Item
  •   Knowhub Home
  • Publications
  • Published Paper
  • Data Synergy and Evaluation
  • 2025
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating the Generalisability of Region-naïve Machine Learning Algorithms for the Identification of Epilepsy in Low-resource Settings

Thumbnail
Date
2025
Author
Duta I.
Kariuki S. M.
Ngugi A. K.
Mwesige A. K.
Masanja H.
Mwanga D. M.
Owusu-Agyei S.
Wagner R.
Cross J. H.
Sander J. W.
Newton C. R.
Sen A.
& Jones G. D
Metadata
Show full item record
Usage Stats
0
views
0
downloads

Abstract
This pilot stepped-wedge cluster-randomized trial evaluated the effect of text message reminders on newborn vaccination timing in Nairobi slums. Pregnant women either received SMS prompts for birth-dose vaccines (oral polio and BCG) or usual care. Results showed significantly improved timely vaccination during the SMS intervention: oral polio (93.0% vs 80.9%) and BCG (92.7% vs 81.6%). Adjusted risk ratios confirmed the benefit of SMS reminders, demonstrating their potential to increase birth-dose vaccine coverage in resource-constrained settings.
Subject
mHealth II Vaccination Timeliness II SMS Reminders II Urban Health II Randomized Controlled Trial II Newborn Immunization II Public Health
URI
https://doi.org/10.1371/journal.pdig.0000491
http://knowhub.aphrc.org/handle/123456789/2402
Collections
  • 2025 [19]

KnowHub software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of KnowhubCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

KnowHub software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV