• English
    • français
    • Swahili
  • français 
    • English
    • français
    • Swahili
  • Ouvrir une session
Advanced Search
Help Guide
Voir le document 
  •   Accueil de DSpace
  • Publications
  • Published Paper
  • Data Synergy and Evaluation
  • 2024
  • Voir le document
  •   Accueil de DSpace
  • Publications
  • Published Paper
  • Data Synergy and Evaluation
  • 2024
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling Hypertension Risk Factors: Continuous Versus Binary Blood Pressure Scales

Thumbnail
Date
2024
Auteur
Appeli, S.
Omala, S.
Kisaakye, P.
Izudi, J.
Metadata
Afficher la notice complète
Usage Stats
0
views
0
downloads

Résumé
Background Risk factors for hypertension are commonly identified with blood pressure measured and modeled on a binary rather than continuous scale leading to information loss and reduced statistical efficiency. Methods We analyzed data from a nationally representative survey of adult Ugandans (18-69 years), focusing on non-communicable disease (NCD) risk factors. We report the accuracy of modeling risk factors for hypertension with blood pressure measured on a binary scale using binary logistic regression versus a continuous scale using gamma regression. We built a binary logistic regression model and two gamma regression models: one for the average systolic blood pressure (SBP) and another for the average diastolic blood pressure (DBP). Model accuracy was compared using Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC). Results Of the 3,987 participants, the median age was 33 years (interquartile range: 25-45). Gamma regression model for the average SBP identified age, sex, region, marital status, income, and body mass index (BMI) as risk factors for hypertension (deviance = 212,196; AIC = 32,777.70; BIC = 179,331). Gamma regression model for the average DBP showed age, region, marital status, and BMI as risk factors for hypertension (deviance = 230,745; AIC = 35,438.24; BIC = 197,880). The binary logistic regression model indicated age, marital status, and BMI as risk factors for hypertension (deviance = 14,973,578; AIC = 37,556.11; BIC = 14,940,713). Conclusion Risk factors for hypertension are more accurately modeled when blood pressure is on a continuous than binary scale. These differences have important public health and clinical significance in treating hypertension. We recommend using gamma regression for modeling the risk factors for hypertension.
Sujet
Blood Pressure Scales; Hypertension risk factors; Modeling
URI
https://e-jghs.org/DOIx.php?id=10.35500/jghs.2024.6.e5
https://www.researchgate.net/publication/381504199_Modeling_hypertension_risk_factors_continuous_versus_binary_blood_pressure_scales
10.35500/jghs.2024.6.e4
http://knowhub.aphrc.org/handle/123456789/1504
Collections
  • 2024 [4]

KnowHub software copyright © 2002-2022  LYRASIS
Contactez-nous | Faire parvenir un commentaire
Theme by 
Atmire NV
 

 

Parcourir

Tout DSpaceCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

Mon compte

Ouvrir une sessionS'inscrire

KnowHub software copyright © 2002-2022  LYRASIS
Contactez-nous | Faire parvenir un commentaire
Theme by 
Atmire NV