• English
    • français
    • Swahili
  • français 
    • English
    • français
    • Swahili
  • Ouvrir une session
Advanced Search
Help Guide
Voir le document 
  •   Accueil de DSpace
  • Publications
  • Technical Paper
  • Data Synergy and Evaluation
  • 2023
  • Voir le document
  •   Accueil de DSpace
  • Publications
  • Technical Paper
  • Data Synergy and Evaluation
  • 2023
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

INSPIRE PEACH Data Harmonization and Deployment Pipeline

Thumbnail
Date
2023
Auteur
Michael Ochola
Metadata
Afficher la notice complète
Usage Stats
0
views
0
downloads

Résumé
The emergence of coronavirus disease 2019 (COVID-19) as a global pandemic presents a serious health threat to many low-and-middle-income countries (LMICs) and the livelihoods of its people. The need for accurate, real-time data is urgent, so that health policy and planning can be updated to combat the threat. Obtaining those data requires innovation in data collection and aggregation, especially under lockdown restrictions. Artificial Intelligence (AI) and Data Science (DS) innovations are needed to get accurate, real-time data, using multiple data sources. In many LMICs, there are methodological gaps in data integration and a lack of information and research capacity to make informed decisions and guide public health policy. The absence of data makes it difficult to identify vulnerable populations and to give them appropriate information for their health. This project proposes to develop the key elements of a coordinated Pan-African COVID-19 data ecosystem. We will build a robust suite of data standards and technologies, diverse data integration methodologies, using the power of AI and DS for analysis and oversight through a trusted governance and policy environment.
Sujet
Data harmonization; AI; Covid-19
URI
https://inspiredata.network/
https://aphrc.org/wp-content/uploads/2022/05/INSPIRE-PEACH-factsheet.pdf
http://knowhub.aphrc.org/handle/123456789/1237
Collections
  • 2023 [6]

KnowHub software copyright © 2002-2022  LYRASIS
Contactez-nous | Faire parvenir un commentaire
Theme by 
Atmire NV
 

 

Parcourir

Tout DSpaceCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

Mon compte

Ouvrir une sessionS'inscrire

KnowHub software copyright © 2002-2022  LYRASIS
Contactez-nous | Faire parvenir un commentaire
Theme by 
Atmire NV