Afficher la notice abrégée

dc.contributor.authorMwanga D. M.
dc.contributor.authorKipchirchir, I. C. II Muhua, G. O. II Newton, C. R. II Kadengye, D. T.
dc.date.accessioned2025-12-09T10:52:06Z
dc.date.available2025-12-09T10:52:06Z
dc.date.issued2025
dc.identifier.urihttps://doi.org/10.3389/frma.2025.1583476
dc.identifier.urihttp://knowhub.aphrc.org/handle/123456789/2564
dc.description.abstractThis methodological study explored approaches for appropriately accounting for clustering in self-reported outcomes within population-based surveys, using epilepsy prevalence estimation in Nairobi as a case example. Several analytical strategies were compared to evaluate bias, precision, and robustness in the presence of intra-cluster correlation. Results demonstrate that failure to adjust for clustering leads to underestimated standard errors and potentially misleading prevalence estimates. The study provides practical guidance for researchers designing surveys with clustered self-report data.
dc.publisherFrontiers Media SA
dc.subjectSurvey methodology II Cluster sampling II Statistical analysis II Non-communicable diseases II Epidemiology II Kenya
dc.titleAccounting for Clustering for Self-Reported Outcomes in The Design and Analysis of Population-Based Surveys: A Case Study of Estimation of Prevalence of Epilepsy in Nairobi, Kenya


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée