• English
    • français
    • Swahili
  • français 
    • English
    • français
    • Swahili
  • Ouvrir une session
Advanced Search
Help Guide
Voir le document 
  •   Accueil de DSpace
  • Publications
  • Published Paper
  • Data Synergy and Evaluation
  • 2025
  • Voir le document
  •   Accueil de DSpace
  • Publications
  • Published Paper
  • Data Synergy and Evaluation
  • 2025
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accounting for Clustering for Self-Reported Outcomes in The Design and Analysis of Population-Based Surveys: A Case Study of Estimation of Prevalence of Epilepsy in Nairobi, Kenya

Thumbnail
Date
2025
Auteur
Mwanga D. M.
Kipchirchir, I. C. II Muhua, G. O. II Newton, C. R. II Kadengye, D. T.
Metadata
Afficher la notice complète
Usage Stats
0
views
0
downloads

Résumé
This methodological study explored approaches for appropriately accounting for clustering in self-reported outcomes within population-based surveys, using epilepsy prevalence estimation in Nairobi as a case example. Several analytical strategies were compared to evaluate bias, precision, and robustness in the presence of intra-cluster correlation. Results demonstrate that failure to adjust for clustering leads to underestimated standard errors and potentially misleading prevalence estimates. The study provides practical guidance for researchers designing surveys with clustered self-report data.
Sujet
Survey methodology II Cluster sampling II Statistical analysis II Non-communicable diseases II Epidemiology II Kenya
URI
https://doi.org/10.3389/frma.2025.1583476
http://knowhub.aphrc.org/handle/123456789/2564
Collections
  • 2025 [28]

KnowHub software copyright © 2002-2022  LYRASIS
Contactez-nous | Faire parvenir un commentaire
Theme by 
Atmire NV
 

 

Parcourir

Tout DSpaceCommunautés & CollectionsPar date de publicationAuteursTitresSujetsCette collectionPar date de publicationAuteursTitresSujets

Mon compte

Ouvrir une sessionS'inscrire

KnowHub software copyright © 2002-2022  LYRASIS
Contactez-nous | Faire parvenir un commentaire
Theme by 
Atmire NV