Show simple item record

dc.contributor.authorOshingbesan A.
dc.contributor.author
dc.contributor.authorKamp M.
dc.contributor.author
dc.contributor.authorMpangase P. T.
dc.contributor.author
dc.contributor.authorAdetunji K.
dc.contributor.author
dc.contributor.authorIddi S.
dc.contributor.author
dc.contributor.authorNderitu D. M.
dc.contributor.author
dc.contributor.authorAkumu T.
dc.contributor.author
dc.contributor.authorAchilonu O.
dc.contributor.author
dc.contributor.authorKisiangani I.
dc.contributor.author
dc.contributor.authorMathema T.
dc.contributor.author
dc.contributor.authorTadesse G.
dc.contributor.author
dc.contributor.authorGomez-Olive F. X.
dc.contributor.authorKabudula C. W.
dc.contributor.authorHazelhurst S.
dc.contributor.authorAsiki G.
dc.contributor.authorRamsay M.
dc.contributor.author& Speakman S.
dc.date.accessioned2025-07-24T07:23:19Z
dc.date.available2025-07-24T07:23:19Z
dc.date.issued2025
dc.identifier.urihttps://doi.org/10.1038/s41598-025-96569-4
dc.identifier.urihttp://knowhub.aphrc.org/handle/123456789/2403
dc.description.abstractThis study develops an automated stratification approach to detect sub-populations with anomalously high or low multimorbidity rates in sub-Saharan African datasets, using survey data from Nairobi (Kenya) and Agincourt (South Africa). The method complements traditional confirmatory analyses, automatically scanning across all possible sub-groups. Results show consistency in high-risk populations across both areas, demonstrating the method's potential for scalable exploratory data analysis.
dc.publisherSpringer Nature
dc.subjectExploratory Analysis II Multimorbidity II Sub-population Detection II Survey Data II Africa II Data Science II Public Health
dc.titleSub-population Identification of Multimorbidity in Sub-saharan African Populations


Files in this item

FileskiasiFormatOnesha

There are no files associated with this item.

kinaonekana kwenye vifungu vifuatavyo

Show simple item record