dc.contributor.author | Oshingbesan A. | |
dc.contributor.author | | |
dc.contributor.author | Kamp M. | |
dc.contributor.author | | |
dc.contributor.author | Mpangase P. T. | |
dc.contributor.author | | |
dc.contributor.author | Adetunji K. | |
dc.contributor.author | | |
dc.contributor.author | Iddi S. | |
dc.contributor.author | | |
dc.contributor.author | Nderitu D. M. | |
dc.contributor.author | | |
dc.contributor.author | Akumu T. | |
dc.contributor.author | | |
dc.contributor.author | Achilonu O. | |
dc.contributor.author | | |
dc.contributor.author | Kisiangani I. | |
dc.contributor.author | | |
dc.contributor.author | Mathema T. | |
dc.contributor.author | | |
dc.contributor.author | Tadesse G. | |
dc.contributor.author | | |
dc.contributor.author | Gomez-Olive F. X. | |
dc.contributor.author | Kabudula C. W. | |
dc.contributor.author | Hazelhurst S. | |
dc.contributor.author | Asiki G. | |
dc.contributor.author | Ramsay M. | |
dc.contributor.author | & Speakman S. | |
dc.date.accessioned | 2025-07-24T07:23:19Z | |
dc.date.available | 2025-07-24T07:23:19Z | |
dc.date.issued | 2025 | |
dc.identifier.uri | https://doi.org/10.1038/s41598-025-96569-4 | |
dc.identifier.uri | http://knowhub.aphrc.org/handle/123456789/2403 | |
dc.description.abstract | This study develops an automated stratification approach to detect sub-populations with anomalously high or low multimorbidity rates in sub-Saharan African datasets, using survey data from Nairobi (Kenya) and Agincourt (South Africa). The method complements traditional confirmatory analyses, automatically scanning across all possible sub-groups. Results show consistency in high-risk populations across both areas, demonstrating the method's potential for scalable exploratory data analysis. | |
dc.publisher | Springer Nature | |
dc.subject | Exploratory Analysis II Multimorbidity II Sub-population Detection II Survey Data II Africa II Data Science II Public Health | |
dc.title | Sub-population Identification of Multimorbidity in Sub-saharan African Populations | |