Show simple item record

dc.contributor.authorOchola, M.
dc.contributor.authorKiwuwa-Muyingo, S.
dc.contributor.authorBhattacharjee, T.
dc.contributor.authorAmadi, D.
dc.contributor.authorNg'etich, M.
dc.contributor.authorKadengye, D.
dc.contributor.authorOwoko, H.
dc.contributor.authorIgumba, B.
dc.contributor.authorGreenfield, J.
dc.contributor.authorTodd, J.
dc.contributor.authorKiragga, A.
dc.date.accessioned2025-12-18T10:57:40Z
dc.date.available2025-12-18T10:57:40Z
dc.date.issued2025
dc.identifier.urihttps://doi.org/10.3389/fdgth.2025.1423621
dc.identifier.urihttp://knowhub.aphrc.org/handle/123456789/2878
dc.description.abstractThis study demonstrates harmonization of population health data into the OMOP Common Data Model using COVID-19 sero-surveillance data from Nairobi. It illustrates how common data models enhance interoperability, reproducibility, and multi-site analysis in low-resource settings.
dc.publisherFrontiers
dc.subjectOMOP CDM
dc.subjectInteroperability
dc.subjectPopulation health data
dc.subjectCOVID-19
dc.subjectKenya
dc.titleHarmonizing Population Health Data into OMOP Common Data Model: A Demonstration Using COVID-19 Sero-Surveillance Data from Nairobi Urban Health and Demographic Surveillance System


Files in this item

FileskiasiFormatOnesha

There are no files associated with this item.

kinaonekana kwenye vifungu vifuatavyo

Show simple item record