Show simple item record

dc.contributor.authorMomanyi, R.
dc.contributor.authorCygu, S. B.
dc.contributor.authorKiragga, A.
dc.contributor.authorOdero, H. O.
dc.contributor.authorNg'etich, M.
dc.contributor.authorAsiki, G.
dc.contributor.authorKavu, T. D.
dc.date.accessioned2025-12-18T10:57:40Z
dc.date.available2025-12-18T10:57:40Z
dc.date.issued2025
dc.identifier.urihttps://doi.org/10.1177/00469580251319905
dc.identifier.urihttp://knowhub.aphrc.org/handle/123456789/2871
dc.description.abstractThis study applies unsupervised machine learning techniques to analyze grocery purchase patterns in Kenyan supermarkets. By identifying latent demographic and consumption clusters, the research provides insights into consumer behavior and nutrition transitions. The findings demonstrate the value of data-driven approaches for informing public health nutrition and market interventions.
dc.publisherSage
dc.subjectMachine learning
dc.subjectConsumer behavior
dc.subjectNutrition transition
dc.subjectKenya
dc.subjectUnsupervised learning
dc.titleAnalyzing Demographic Grocery Purchase Patterns in Kenyan Supermarkets Through Unsupervised Learning Techniques


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record