| dc.contributor.author | Otieno, K. | |
| dc.contributor.author | Chaba, L. | |
| dc.contributor.author | Omondi, E. | |
| dc.contributor.author | Odhiambo, C. | |
| dc.contributor.author | Omolo, B. | |
| dc.date.accessioned | 2025-12-18T10:57:40Z | |
| dc.date.available | 2025-12-18T10:57:40Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | https://doi.org/10.3389/fams.2025.1585707 | |
| dc.identifier.uri | http://knowhub.aphrc.org/handle/123456789/2868 | |
| dc.description.abstract | This study applies a Hierarchical Archimedean Copula model to analyze dependence structures among key climatic variables in Kenya. Using empirical climate data, the paper demonstrates how hierarchical copulas capture complex, multi-level interdependencies beyond traditional correlation approaches. The findings highlight the usefulness of advanced statistical modeling for understanding climate variability and informing climate-sensitive planning and policy in low- and middle-income settings. | |
| dc.publisher | Frontiers | |
| dc.subject | Climate modeling | |
| dc.subject | Copula models | |
| dc.subject | Statistical dependence | |
| dc.subject | Kenya | |
| dc.subject | Environmental data science | |
| dc.title | A Hierarchical Archimedean Copula (HAC) Model for Climatic Variables: An Application to Kenyan Data | |