Afficher la notice abrégée

dc.contributor.authorOtieno, K.
dc.contributor.authorChaba, L.
dc.contributor.authorOmondi, E.
dc.contributor.authorOdhiambo, C.
dc.contributor.authorOmolo, B.
dc.date.accessioned2025-12-18T10:57:40Z
dc.date.available2025-12-18T10:57:40Z
dc.date.issued2025
dc.identifier.urihttps://doi.org/10.3389/fams.2025.1585707
dc.identifier.urihttp://knowhub.aphrc.org/handle/123456789/2868
dc.description.abstractThis study applies a Hierarchical Archimedean Copula model to analyze dependence structures among key climatic variables in Kenya. Using empirical climate data, the paper demonstrates how hierarchical copulas capture complex, multi-level interdependencies beyond traditional correlation approaches. The findings highlight the usefulness of advanced statistical modeling for understanding climate variability and informing climate-sensitive planning and policy in low- and middle-income settings.
dc.publisherFrontiers
dc.subjectClimate modeling
dc.subjectCopula models
dc.subjectStatistical dependence
dc.subjectKenya
dc.subjectEnvironmental data science
dc.titleA Hierarchical Archimedean Copula (HAC) Model for Climatic Variables: An Application to Kenyan Data


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée